
Daphne Ippolito and Fernando Diaz

Embeddings

Large Language Model
Applications

January 27, 2026

logistics

Scribe notes
Use of Language Models

Using a language model to generate any part of a homework answer, scribe notes, and project reports
will be considered a violation of academic integrity. To reiterate, all written words in your homework,
scribe notes, and project reports should be written by yourself, without the use of AI (unless you are
quoting AI outputs as part of your answer).

You may however use AI to learn more about the subject material of the class and to help you write
code. If you do use AI systems to help with the homework, please fill out the “Use of AI” question on
the homework to help the instructors understand your usage. Use of AI without making an honest
attempt at answering this question will be considered a violation of academic integrity.

If you have submitted scribe notes and were confused by the AI use
policy and would like to prepare new scribe notes, you have until
January 30 to submit a new set of notes.

poll: an embedding is…

Local representations
Embeddings

• A neural network implements a parameterized
function defined as a composition of
transformations between vector spaces (or
tensor spaces).

• During inferences, we are repeatedly projecting
vectors between spaces of different dimensionalities.

• Local representation: When developing a
system, we often have elements that are
represented in raw, externally defined
coordinate systems that do not directly reflect
their semantic or latent structure.

elements representation

words one-hot vector in |V|-dimensional space

documents sequence of words

users one-hot vector in |U|-dimensional space

sessions sequence of turns

images pixel values

Geoffrey E. Hinton. Distributed representations. Technical report CMU-CS-84-157, Carnegie Mellon University, 1984.

Distributed representations
Embeddings

• A distributed representation is a mapping from a local, symbolic, or discrete representation to a continuous
internal representation that supports generalization and efficient computation.

• One-hot projection (words, user ids): A learned mapping from a sparse, high-dimensional indicator space to a
dense, typically lower-dimensional continuous space.

• Sequence projection (strings, sessions): A function that maps an ordered sequence of discrete elements to a
fixed-dimensional vector, typically via composition operators such as recurrence, attention, pooling, or
convolution, while encoding order and context.

• Graph projection (social networks): A mapping from nodes (and their neighborhoods or roles) in a graph to
vectors, where geometric proximity reflects structural similarity, connectivity, or shared context in the graph.

• Spatial projection (images): A mapping from structured spatial inputs to vectors that preserve local spatial
correlations and hierarchical features, typically using convolutional or patch-based architectures.

Geoffrey E. Hinton. Distributed representations. Technical report CMU-CS-84-157, Carnegie Mellon University, 1984.

poll: embeddings can be used for…

Uses
Embeddings

• Generalization and transfer: embeddings act as reusable intermediate representations that enable
transfer across languages, tasks, domains, and modalities, often serving as inputs to downstream
models with minimal task-specific supervision.

• Retrieval: embedding externally-defined elements into a single, denser vector space, allows their
indexing and retrieval. Retrieval backends often use dense vectors to represent documents,
passages, sentences, images.

• Evaluation: embeddings capture semantic similarity not supported by lexical evaluation metrics.
Soft metrics (e.g., Bertscore) use dense vectors to represent words.

Ronan Collobert and Jason Weston. A unified architecture for natural language processing: deep neural networks with multitask learning. In Proceedings of the 25th international conference on machine
learning, 2008.
Po-Sen Huang, Xiaodong He, Jianfeng Gao, Li Deng, Alex Acero, and Larry Heck. Learning deep structured semantic models for web search using clickthrough data. In Proceedings of the 22nd acm
international conference on information & knowledge management, 2013.
Tianyi Zhang, Varsha Kishore, Felix Wu, Kilian Q. Weinberger, and Yoav Artzi. Bertscore: evaluating text generation with bert. In International conference on learning representations, 2020.

poll: embeddings were invented in…

History
Embeddings

• [Salton 1963] Vector Space Model. Documents embedded into |V|-dimensional space as tf.idf-weighted
vectors. Sequence information not preserved.

• [Switzer 1964] Dimensionality Reduction. Using factor analysis to capture semantic similarity between
words.

• [Hinton 1984] Distributed Representations. Conceptual foundation for learned, distributed meaning
in neural networks.

• [Deerwester et al., 1990] Latent Semantic Indexing. Dense latent representations via matrix
reconstruction.

• [Hofmann 1999] Probabilistic Latent Semantic Indexing. Dense linear representation via latent
variable modeling.

Gerard Salton. Associative document retrieval techniques using bibliographic information. Journal of the ACM, 10(4):440--457, 1963.
Paul Switzer. Vector images in document retrieval. In Proceedings of the symposium on statistical association methods for mechanical documentation, 1964.
Geoffrey E. Hinton. Distributed representations. Technical report CMU-CS-84-157, Carnegie Mellon University, 1984.
Scott C. Deerwester, Susan T. Dumais, Thomas K. Landauer, George W. Furnas, and Richard A. Harshman. Indexing by latent semantic analysis. Journal of the American Society of Information Science, 41(6):391-407, 1990.
Thomas Hofmann. Probabilistic latent semantic indexing. In Sigir '99: proceedings of the 22nd annual international acm sigir conference on research and development in information retrieval, 50--57, New York, NY, USA, 1999.

History
Embeddings

• [Bengio et al., 2003] Neural Language Models. Learned embeddings for generalization in NLP.

• [Collobert and Weston, 2008] Multitask representation learning. Word embeddings based on
performance across multiple tasks.

• [Mikolov et al., 2013; Pennington et al., 2014] Word embeddings (word2vec, GloVe). Scalable
neural and matrix-factorization-based methods for learning from co-occurrence statistics.

Yoshua Bengio, Réjean Ducharme, Pascal Vincent, and Christian Janvin. A neural probabilistic language model. J. Mach. Learn. Res., 3:1137--1155, March 2003.
Ronan Collobert and Jason Weston. A unified architecture for natural language processing: deep neural networks with multitask learning. In Proceedings of the 25th international conference on machine learning, ICML
'08, 160–167, New York, NY, USA, 2008.
Tomas Mikolov, Kai Chen, Greg Corrado, and Jeffrey Dean. Efficient estimation of word representations in vector space. In Workshop proceedings of the 2013 international conference on learning representations, 2013.
Jeffrey Pennington, Richard Socher, and Christopher D. Manning. Glove: global vectors for word representation. In Empirical methods in natural language processing (emnlp), 1532–1543, 2014.

Up to this point, word embeddings were static, a representation did
not change as a function of the words around it.

poll: static embeddings are bad
because…

The problem with static embeddings
• Ambiguity

• A word can mean multiple different things, based on the topical
context.

• A word can mean multiple different things, based on its
grammatical role.

• Intuition for a solution

• Knowing the context of a word (topical, grammatical), can help
disambiguate its meaning.

• “One sense per discourse”: An ambiguous word will have a
single sense within a document (or dialogue) [Gale et al., 1992].

William A. Gale, Kenneth W. Church, and David Yarowsky. One sense per discourse. In Proceedings of the workshop on speech and natural language, HLT '91, 233--237, Stroudsburg, PA, USA, 1992. ,
Association for Computational Linguistics.

study. A panel of three judges (the authors of this pa-
per) were given 100 sets of concordance lines. Each set
showed all of the instances of one of the test words in a
particular Grolier's article. The judges were asked to in-
dicate if the set of concordance lines used the same sense
or not. Only 6 of 300 w,-ticle-judgements were judged to
contain multiple senses of one of the test words. All
three judges were convinced after grading 100 articles
that there was considerable validity to the hypothesis.

With this promising preliminary verification, the follow-
ing blind test was devised. Five subjects (the three au-
thors and two of their colleagues) were given a ques-
tionnaire start ing with a set of definitions selected from
OALD (Crowie et al., 1989) and followed by a number
of pairs of concordance lines, randomly selected from
Grolier's Encyclopedia (1991). The subjects were asked
to decide for each pair, whether the two concordance
lines corresponded to the same sense or not.

antenna
1. jointed organ found in pairs on the heads
of insects and crustaceans, used for feeling,
etc. ~ the illus at insect.
2. radio or TV aerial.

lack eyes, legs, wings, a n t e n n a e and distinct mouthparts
The Brachycera have short a n t e n n a e and include the more evol

The questionnaire contained a total of 82 pairs of concor-
dance lines for 9 polysemous words: antenna, campaign,
deposit, drum, hull, interior, knife, landscape, and ma-
rine. 54 of the 82 pairs were selected from the same
discourse. The remaining 28 pairs were introduced as a
control to force the judges to say that some pairs were
different; they were selected from different discourses,
and were checked by hand as an a t tempt to assure that
they did not happen to use the same sense. The judges
found it quite easy to decide whether the pair used the
same sense or not. Table 4 shows that there was very
high agreement among the judges. With the exception
of judge 2, all of the judges agreed with the majori ty
opinion in all but one or two of the 82 cases. The agree-
ment rate was 96.8%, averaged over all judges, or 99.1%,
averaged over the four best judges.

Table 4: Strong Agreement
Judge n %

1 82 100.0%
2 72 87.8%
3 81 98.7%
4 82 100.0%
5 80 97.6%

Average 96.8%
Average (without Judge 2) 99.1%

As we had hoped, the experiment did, in fact, confirm
the one-sense-per-discourse hypothesis. Of 54 pairs se-
lected from the same article, the majori ty opinion found
that 51 shared the same sense, and 3 did not. ~

We conclude that with probability about 94% (51/54),
two polysemous nouns drawn from the same article will
have the same sense. In fact, the experiment tested a
particularly difficult case, since it did not include any
unambiguous words. If we assume a mixture of 60% un-
ambiguous words and 40% polysemous words, then the
probability moves from 94% to 100% x .60 + 94% x .40
98%. In other words, there is a very strong tendency
(98%) for multiple uses of a word to share the same sense
in well-written coherent discourse.

One might ask if this result is specific to Grolier's or
to good writing or some other factor. The first author
looked at the usage of these same nine words in the
Brown Corpus, which is believed to be a more balanced
sample of general language and which is also more widely
available than Grolier's and is therefore more amenable
to replication. The Brown Corpus consists of 500 dis-
course fragments of 2000 words, each. We were able to
find 259 concordance lines like the ones above, show-
ing two instances of one of the nine test words selected
from the same discourse fragment. However, four of the
nine test words are not very interesting in the Brown
Corpus antenna, drum, hull, and knife, since only one
sense is observed. There were 106 pairs for the remain-
ing five words: campaign, deposit, interior, landscape,
and marine. The first author found that 102 of the 106
pairs were used in the same sense. Thus, it appears that
one-sense-per-discourse tendency is also fairly strong in
the Brown Corpus (102/106 ~ 96%), as well as in the
Grolier's Encyclopedia.

4 . I M P L I C A T I O N S
There seem to be two applications for the one-sense-per-
discourse observation: first it can be used as an ad-
ditional source of constraint for improving the perfor-
mance of the word-sense disambiguation algorithm, and

3In contrast, of the 28 control pairs, the majority opinion found
that only 1 share the same sense, and 27 did not.

236

Topic-specific word embeddings
• “one sense per discourse” suggests that knowing

the topic can inform a word’s representation.

• given a string x, how do we determine the right
topic?

• information retrieval provides a way to, given x,
retrieve topically-relevant documents.

• can use these documents to train word
embeddings using static methods.

• although the embedding is static, it changes based on x.

Fernando Diaz, Bhaskar Mitra, and Nick Craswell. Query expansion with locally-trained word embeddings. In Proceedings of the 54th annual meeting of the association for computational linguistics, 2016.

K
L

0.00

0.05

0.10

0.15

rank

Figure 2: Pointwise Kullback-Leibler diver-
gence for terms occurring in documents re-
lated to ‘argentina pegging dollar’ relative to
frequency in gigaword.

for the top 100 most frequent terms in pt(w).
The higher ranked terms, which are also good
query expansion candidates, tend to have
much higher probabilities than found in pc(w).
If the loss on those words is large, this may
result in poor embeddings for the most impor-
tant words for the topic.

A dramatic change in distribution between
the corpus and the topic has implications for
performance precisely because of the objective
used by word2vec (i.e. Equation 1). The train-
ing emphasizes word-context pairs occurring
with high frequency in the corpus. We will
demonstrate that, even with heuristic down-
sampling of frequent terms in word2vec, these
techniques result in suboptimal performance
for specific topics.

Thus far, we have sketched out why using
the corpus distribution for a specific topic may
result in undesirable outcomes. However, it is
even unclear that pt(w|c) = pc(w|c). In fact,
we suspect that pt(w|c) �= pc(w|c) because of
the ‘one sense per discourse’ claim (Gale et
al., 1992). We can qualitatively observe the
di↵erence in pc(w|c) and pt(w|c) by training
two word2vec models: the first on the large,
generic Gigaword corpus and the second on a
topically-constrained subset of the gigaword.
We present the most similar terms to ‘cut’
using both a global embedding and a topic-
specific embedding in Figure 3. In this case,
the topic is ‘gasoline tax’. As we can see, the
‘tax cut’ sense of ‘cut’ is emphasized in the
topic-specific embedding.

global local
cutting tax
squeeze deficit
reduce vote
slash budget

reduction reduction
spend house
lower bill
halve plan
soften spend
freeze billion

Figure 3: Terms similar to ‘cut’ for a word2vec
model trained on a general news corpus and
another trained only on documents related to
‘gasoline tax’.

3 Local Word Embeddings

The previous section described several reasons
why a global embedding may result in over-
general word embeddings. In order to perform
topic-specific training, we need a set of topic-
specific documents. In information retrieval
scenarios users rarely provide the system with
examples of topic-specific documents, instead
providing a small set of keywords.

Fortunately, we can use information re-
trieval techniques to generate a query-specific
set of topical documents. Specifically, we
adopt a language modeling approach to do so
(Croft and La↵erty, 2003). In this retrieval
model, each document is represented as a max-
imum likelihood language model estimated
from document term frequencies. Query lan-
guage models are estimated similarly, using
term frequency in the query. A document
score then, is the Kullback-Leibler divergence
between the query and document language
models,

D(pq!pd) =


w⇠V
pq(w) log

pq(w)

pd(w)
(4)

Documents whose language models are more
similar to the query language model will have
a lower KL divergence score. For consistency
with prior work, we will refer to this as the
query likelihood score of a document.

The scores in Equation 4 can be passed
through a softmax function to derive a multi-
nomial over the entire corpus (Lavrenko and

Topic-specific word embeddings
• “one sense per discourse” suggests that knowing

the topic can inform a word’s representation.

• given a string x, how do we determine the right
topic?

• information retrieval provides a way to, given x,
retrieve topically-relevant documents.

• can use these documents to train word
embeddings using static methods.

• although the embedding is static, it changes based on x.

Fernando Diaz, Bhaskar Mitra, and Nick Craswell. Query expansion with locally-trained word embeddings. In Proceedings of the 54th annual meeting of the association for computational linguistics, 2016.

Table 3: Kendall’s ` and Spearman’s � be-
tween improvement in NDCG@10 and lo-
cal KL divergence with the corpus language
model. The improvement is measured for the
best local embedding over the best global em-
bedding.

` �
trec12 0.0585 0.0798
robust 0.0545 0.0792
web 0.0204 0.0283

didates. We can then visualize where these
terms lie in the global and local embeddings.
In Figure 5, we present a two-dimensional pro-
jection (van der Maaten and Hinton, 2008)
of terms for the query ‘ocean remote sens-
ing’, with those good candidates highlighted.
Our projection includes the top 50 candidates
by frequency and a sample of terms occurring
in the query likelihood retrieval. We notice
that, in the global embedding, the good can-
didates are spread out amongst poorer candi-
dates. By contrast, the local embedding clus-
ters the candidates in general but also situates
them closely around the query. As a result, we
suspect that the similar terms extracted from
the local embedding are more likely to include
these good candidates.

7 Discussion

The success of local embeddings on this task
should alarm natural language processing re-
searchers using global embeddings as a rep-
resentational tool. For one, the approach of
learning from vast amounts of data is only ef-
fective if the data is appropriate for the task
at hand. And, when provided, much smaller
high-quality data can provide much better per-
formance. Beyond this, our results suggest
that the approach of estimating global repre-
sentations, while computationally convenient,
may overlook insights possible at query time,
or evaluation time in general. A similar local
embedding approach can be adopted for any
natural language processing task where topi-
cal locality is expected and can be estimated.
Although we used a query to re-weight the cor-
pus in our experiments, we could just as easily
use alternative contextual information in other
tasks.

global

local

Figure 5: Global versus local embedding of
highly relevant terms. Each point represents a
candidate expansion term. Red points have
high frequency in the relevant set of docu-
ments. White points have low or no frequency
in the relevant set of documents. The blue
point represents the query. Contours indicate
distance from the query.

Despite these strong results, we believe
there are still some open questions in this
work. First, although local embeddings pro-
vide e↵ectiveness gains, they can be quite inef-
ficient compared to one-time global embedding
computation. We believe there is opportunity
to improve the e�ciency by considering o✏ine
computation of local embeddings at a coarser
level than queries but more specialized than
the corpus. If the retrieval algorithm is able
to select the appropriate embedding at query
time, we can avoid training the local embed-
ding. Second, although our secondary experi-
ments present some support for our intuition,
the results are not strong enough to provide
a solid explanation. Further theoretical and
empirical analysis is necessary.

The problems with topic-specific embeddings

• Topic-specific word embeddings are bad because…

• limited by retrieval system

• need to learn a new embedding for every sentence

• does not capture local context

• “One sense per collocation”: An ambiguous word will
have a single sense within a local context (e.g., phrase,
sentence) [Yarowsky et al., 1993].

• “You shall know a word by the company it keeps!” [Firth 1957]

David Yarowsky. One sense per collocation. In Proceedings of the workshop on human language technology, HLT '93, 266--271, Stroudsburg, PA, USA, 1993. , Association for Computational Linguistics.
J.R. Firth. Studies in linguistic analysis: special volume of the philosogical society. Special Volume of the Philological Society. Blackwell, 1957.

ONE SENSE PER COLLOCATION
David Yarowsky*

D e p a r t m e n t o f C o m p u t e r and I n f o r m a t i o n Sc i ence
Un ive r s i ty o f P e n n s y l v a n i a

Phi ladelphia , PA 19104
y a r o w s k y @ u n a g i . c i s . u p e n n . e d u

A B S T R A C T

Previous work [Gale, Church and Yarowsky, 1992] showed that with
high probability a polysemous word has one sense per discourse.
In this paper we show that for certain definitions of collocation, a
polysemous word exhibits essentially only one sense per collocation.
We test this empirical hypothesis for several definitions of sense and
collocation, and discover that it holds with 90-99% accuracy for
binary ambiguities. We utilize this property in a disambiguation
algorithm that achieves precision of 92% using combined models of
very local context.

1. I N T R O D U C T I O N

The use of collocations to resolve lexical ambiguities is cer-
tainly not a new idea. The first approaches to sense dis-
ambiguation, such as [Kelly and Stone 1975], were based
on simple hand-built decision tables consisting almost ex-
clusively of questions about observed word associations in
specific positions. Later work from the AI community relied
heavily upon selectional restrictions for verbs, although pri-
marily in terms of features exhibited by their arguments (such
as +DRINKABLE) rather than in terms of individual words or
word classes. More recent work [Brown et al. 1991][Hearst
1991] has utilized a set of discrete local questions (such as
word-to-the-right) in the development of statistical decision
procedures. However, a strong trend in recent years is to treat
a reasonably wide context window as an unordered bag of in-
dependent evidence points. This technique from information
retrieval has been used in neural networks, Bayesian discrim-
inators, and dictionary definition matching. In a comparative
paper in this volume [Leacock et al. 1993], all three methods
under investigation used words in wide context as a pool of
evidence independent of relative position. It is perhaps not
a coincidence that this work has focused almost exclusively
on nouns, as will be shown in Section 6.2. In this study
we will return again to extremely local sources of evidence,
and show that models of discrete syntactic relationships have
considerable advantages.

*This research was supported by an NDSEG Fellowship and by DARPA
grant N00014-90-J-1863. The author is also affiliated with the Linguistics
Research Department of AT&T Bell Laboratories, and greatly appreciates the
use of its resources in support of this work. He would also like to thank Eric
Bfill, Bill Gale, Libby Levison, Mitch Marcus and Philip Resnik for their
valuable feedback.

2. D E F I N I T I O N S O F S E N S E

The traditional definition of word sense is "One of several
meanings assigned to the same orthographic string". As
meanings can always be partitioned into multiple refinements,
senses are typically organized in a tree such as one finds in a
dictionary. In the extreme case, one could continue making
refinements until a word has a slightly different sense every
time it is used. If so, the title of this paper is a tautology.
However, the studies in this paper are focused on the sense
distinctions at the top of the tree. A good working definition of
the distinctions considered are those meanings which are not
typically translated to the same word in a foreign language.

Therefore, one natural type of sense distinction to consider
are those words in English which indeed have multiple trans-
lations in a language such as French. As is now standard in
the field, we use the Canadian Hansards, a parallel bilingual
corpus, to provide sense tags in the form of French transla-
tions. Unfortunately, the Hansards are highly skewed in their
sense distributions, and it is difficult to find words for which
there are adequate numbers of a second sense. More diverse
large bilingual corpora are not yet readily available.

We also use data sets which have been hand-tagged by native
English speakers. To make the selection of sense distinc-
tions more objective, we use words such as bass where the
sense distinctions (fish and musical instrument) correspond
to pronunciation differences ([b~es] and [beIs]). Such data is
often problematic, as the tagging is potentially subjective and
error-filled, and sufficient quantities are difficult to obtain.

As a solution to the data shortages for the above methods,
[Gale, Church and Yarowsky 1992b] proposed the use of
"pseudo-words," artificial sense ambiguities created by tak-
ing two English words with the same part of speech (such as
guerilla and reptile), and replacing each instance of both in a
corpus with a new polysemous word guerrilla~reptile. As it
is entirely possible that the concepts guerrilla and reptile are
represented by the same orthographic string in some foreign
language, choosing between these two meanings based on
context is a problem a word sense disambiguation algorithm
could easily face. "Pseudo-words" are very useful for devel-
oping and testing disambiguation methods because of their
nearly unlimited availability and the known, fully reliable

266

Contextual Representations
• Contextual representations adapt a word’s

representation based on neighboring words.

• ELMo [Peters et al., 2018] uses bidirectional
LSTMs to capture context from neighboring words.

• BERT [Devlin et al., 2019] uses bidirectional
transformers to capture context from neighboring
words.

Matthew E. Peters, Mark Neumann, Mohit Iyyer, Matt Gardner, Christopher Clark, Kenton Lee, and Luke Zettlemoyer. Deep contextualized word representations. In Marilyn Walker, Heng Ji, and
Amanda Stent, editors, Proceedings of the 2018 conference of the north American chapter of the association for computational linguistics: human language technologies, volume 1 (long papers), 2018.
Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. BERT: pre-training of deep bidirectional transformers for language understanding. In Proceedings of the 2019 conference of the north
American chapter of the association for computational linguistics: human language technologies, volume 1 (long and short papers), 2019.

BERT (Ours)

Trm Trm Trm

Trm Trm Trm

...

...

Trm Trm Trm

Trm Trm Trm

...

...

OpenAI GPT

Lstm

ELMo

Lstm Lstm

Lstm Lstm Lstm

Lstm Lstm Lstm

Lstm Lstm Lstm

 T1 T2 TN...

...

...

...

...

 E1 E2 EN...

 T1 T2 TN...

 E1 E2 EN...

 T1 T2 TN...

 E1 E2 EN...

Figure 3: Differences in pre-training model architectures. BERT uses a bidirectional Transformer. OpenAI GPT
uses a left-to-right Transformer. ELMo uses the concatenation of independently trained left-to-right and right-to-
left LSTMs to generate features for downstream tasks. Among the three, only BERT representations are jointly
conditioned on both left and right context in all layers. In addition to the architecture differences, BERT and
OpenAI GPT are fine-tuning approaches, while ELMo is a feature-based approach.

to converge. In Section C.1 we demonstrate that
MLM does converge marginally slower than a left-
to-right model (which predicts every token), but
the empirical improvements of the MLM model
far outweigh the increased training cost.

Next Sentence Prediction The next sentence
prediction task can be illustrated in the following
examples.

Input = [CLS] the man went to [MASK] store [SEP]

he bought a gallon [MASK] milk [SEP]

Label = IsNext

Input = [CLS] the man [MASK] to the store [SEP]

penguin [MASK] are flight ##less birds [SEP]

Label = NotNext

A.2 Pre-training Procedure

To generate each training input sequence, we sam-
ple two spans of text from the corpus, which we
refer to as “sentences” even though they are typ-
ically much longer than single sentences (but can
be shorter also). The first sentence receives the A
embedding and the second receives the B embed-
ding. 50% of the time B is the actual next sentence
that follows A and 50% of the time it is a random
sentence, which is done for the “next sentence pre-
diction” task. They are sampled such that the com-
bined length is  512 tokens. The LM masking is
applied after WordPiece tokenization with a uni-
form masking rate of 15%, and no special consid-
eration given to partial word pieces.

We train with batch size of 256 sequences (256
sequences * 512 tokens = 128,000 tokens/batch)
for 1,000,000 steps, which is approximately 40

epochs over the 3.3 billion word corpus. We
use Adam with learning rate of 1e-4, �1 = 0.9,
�2 = 0.999, L2 weight decay of 0.01, learning
rate warmup over the first 10,000 steps, and linear
decay of the learning rate. We use a dropout prob-
ability of 0.1 on all layers. We use a gelu acti-
vation (Hendrycks and Gimpel, 2016) rather than
the standard relu, following OpenAI GPT. The
training loss is the sum of the mean masked LM
likelihood and the mean next sentence prediction
likelihood.

Training of BERTBASE was performed on 4
Cloud TPUs in Pod configuration (16 TPU chips
total).13 Training of BERTLARGE was performed
on 16 Cloud TPUs (64 TPU chips total). Each pre-
training took 4 days to complete.

Longer sequences are disproportionately expen-
sive because attention is quadratic to the sequence
length. To speed up pretraing in our experiments,
we pre-train the model with sequence length of
128 for 90% of the steps. Then, we train the rest
10% of the steps of sequence of 512 to learn the
positional embeddings.

A.3 Fine-tuning Procedure

For fine-tuning, most model hyperparameters are
the same as in pre-training, with the exception of
the batch size, learning rate, and number of train-
ing epochs. The dropout probability was always
kept at 0.1. The optimal hyperparameter values
are task-specific, but we found the following range
of possible values to work well across all tasks:

• Batch size: 16, 32
13https://cloudplatform.googleblog.com/2018/06/Cloud-

TPU-now-offers-preemptible-pricing-and-global-
availability.html

BERT (Ours)

Trm Trm Trm

Trm Trm Trm

...

...

Trm Trm Trm

Trm Trm Trm

...

...

OpenAI GPT

Lstm

ELMo

Lstm Lstm

Lstm Lstm Lstm

Lstm Lstm Lstm

Lstm Lstm Lstm

 T1 T2 TN...

...

...

...

...

 E1 E2 EN...

 T1 T2 TN...

 E1 E2 EN...

 T1 T2 TN...

 E1 E2 EN...

Figure 3: Differences in pre-training model architectures. BERT uses a bidirectional Transformer. OpenAI GPT
uses a left-to-right Transformer. ELMo uses the concatenation of independently trained left-to-right and right-to-
left LSTMs to generate features for downstream tasks. Among the three, only BERT representations are jointly
conditioned on both left and right context in all layers. In addition to the architecture differences, BERT and
OpenAI GPT are fine-tuning approaches, while ELMo is a feature-based approach.

to converge. In Section C.1 we demonstrate that
MLM does converge marginally slower than a left-
to-right model (which predicts every token), but
the empirical improvements of the MLM model
far outweigh the increased training cost.

Next Sentence Prediction The next sentence
prediction task can be illustrated in the following
examples.

Input = [CLS] the man went to [MASK] store [SEP]

he bought a gallon [MASK] milk [SEP]

Label = IsNext

Input = [CLS] the man [MASK] to the store [SEP]

penguin [MASK] are flight ##less birds [SEP]

Label = NotNext

A.2 Pre-training Procedure

To generate each training input sequence, we sam-
ple two spans of text from the corpus, which we
refer to as “sentences” even though they are typ-
ically much longer than single sentences (but can
be shorter also). The first sentence receives the A
embedding and the second receives the B embed-
ding. 50% of the time B is the actual next sentence
that follows A and 50% of the time it is a random
sentence, which is done for the “next sentence pre-
diction” task. They are sampled such that the com-
bined length is  512 tokens. The LM masking is
applied after WordPiece tokenization with a uni-
form masking rate of 15%, and no special consid-
eration given to partial word pieces.

We train with batch size of 256 sequences (256
sequences * 512 tokens = 128,000 tokens/batch)
for 1,000,000 steps, which is approximately 40

epochs over the 3.3 billion word corpus. We
use Adam with learning rate of 1e-4, �1 = 0.9,
�2 = 0.999, L2 weight decay of 0.01, learning
rate warmup over the first 10,000 steps, and linear
decay of the learning rate. We use a dropout prob-
ability of 0.1 on all layers. We use a gelu acti-
vation (Hendrycks and Gimpel, 2016) rather than
the standard relu, following OpenAI GPT. The
training loss is the sum of the mean masked LM
likelihood and the mean next sentence prediction
likelihood.

Training of BERTBASE was performed on 4
Cloud TPUs in Pod configuration (16 TPU chips
total).13 Training of BERTLARGE was performed
on 16 Cloud TPUs (64 TPU chips total). Each pre-
training took 4 days to complete.

Longer sequences are disproportionately expen-
sive because attention is quadratic to the sequence
length. To speed up pretraing in our experiments,
we pre-train the model with sequence length of
128 for 90% of the steps. Then, we train the rest
10% of the steps of sequence of 512 to learn the
positional embeddings.

A.3 Fine-tuning Procedure

For fine-tuning, most model hyperparameters are
the same as in pre-training, with the exception of
the batch size, learning rate, and number of train-
ing epochs. The dropout probability was always
kept at 0.1. The optimal hyperparameter values
are task-specific, but we found the following range
of possible values to work well across all tasks:

• Batch size: 16, 32
13https://cloudplatform.googleblog.com/2018/06/Cloud-

TPU-now-offers-preemptible-pricing-and-global-
availability.html

Contextual Representations

Kawin Ethayarajh. How contextual are contextualized word representations? Comparing the geometry of BERT, ELMo, and GPT-2 embeddings. In Kentaro Inui, Jing Jiang, Vincent Ng, and Xiaojun Wan,
editors, Proceedings of the 2019 conference on empirical methods in natural language processing and the 9th international joint conference on natural language processing (emnlp-ijcnlp), 2019.

Figure 2: The average cosine similarity between representations of the same word in different contexts is called
the word’s self-similarity (see Definition 1). Above, we plot the average self-similarity of uniformly randomly
sampled words after adjusting for anisotropy (see section 3.4). In all three models, the higher the layer, the lower
the self-similarity, suggesting that contextualized word representations are more context-specific in higher layers.

of contexts a word appears in, rather than its inher-
ent polysemy, is what drives variation in its con-
textualized representations. This answers one of
the questions we posed in the introduction: ELMo,
BERT, and GPT-2 are not simply assigning one of
a finite number of word-sense representations to
each word; otherwise, there would not be so much
variation in the representations of words with so
few word senses.

Context-specificity manifests very differently in
ELMo, BERT, and GPT-2. As noted earlier,
contextualized representations are more context-
specific in upper layers of ELMo, BERT, and GPT-
2. However, how does this increased context-
specificity manifest in the vector space? Do word
representations in the same sentence converge to a
single point, or do they remain distinct from one
another while still being distinct from their repre-
sentations in other contexts? To answer this ques-
tion, we can measure a sentence’s intra-sentence
similarity. Recall from Definition 2 that the intra-
sentence similarity of a sentence, in a given layer
of a given model, is the average cosine similarity
between each of its word representations and their
mean, adjusted for anisotropy. In Figure 3, we plot
the average intra-sentence similarity of 500 uni-
formly randomly sampled sentences.

In ELMo, words in the same sentence are more
similar to one another in upper layers. As
word representations in a sentence become more
context-specific in upper layers, the intra-sentence

similarity also rises. This suggests that, in prac-
tice, ELMo ends up extending the intuition behind
Firth’s (1957) distributional hypothesis to the sen-
tence level: that because words in the same sen-
tence share the same context, their contextualized
representations should also be similar.

In BERT, words in the same sentence are more
dissimilar to one another in upper layers. As
word representations in a sentence become more
context-specific in upper layers, they drift away
from one another, although there are exceptions
(see layer 12 in Figure 3). However, in all lay-
ers, the average similarity between words in the
same sentence is still greater than the average sim-
ilarity between randomly chosen words (i.e., the
anisotropy baseline). This suggests a more nu-
anced contextualization than in ELMo, with BERT
recognizing that although the surrounding sen-
tence informs a word’s meaning, two words in the
same sentence do not necessarily have a similar
meaning because they share the same context.

In GPT-2, word representations in the same
sentence are no more similar to each other than
randomly sampled words. On average, the un-
adjusted intra-sentence similarity is roughly the
same as the anisotropic baseline, so as seen in Fig-
ure 3, the anisotropy-adjusted intra-sentence simi-
larity is close to 0 in most layers of GPT-2. In fact,
the intra-sentence similarity is highest in the input
layer, which does not contextualize words at all.
This is in contrast to ELMo and BERT, where the

poll: which of these change word
embeddings?

Finetuning, Prompting, LoRA
• finetuning can change input embeddings…but rarely does

• prompt/prefix tuning does not change input embeddings…but does change contextual
embeddings

• LoRA…

Effectiveness
Static vs Contextual Embeddings

• Contextual embeddings are often more effective
(e.g., higher precision),

• 1.4 x (NDCG) effectiveness improvement from most
effective static and most effective contextual

• 1.4 x (NDCG) effectiveness improvement from fastest
static and fastest contextual

Tom Aarsen, “Train 400x faster Static Embedding Models with Sentence Transformers”, January 15, 2025.

https://huggingface.co/blog/static-embeddings

Efficiency
Static vs Contextual Embeddings

• Although contextual embeddings are often more
effective, static embeddings involve a simple
lookup.

• 81 x (CPU)/8.6 x (GPU) speed improvement between
fastest static and fastest contextual

• 1918 x (CPU)/101 x (GPU) speed improvement between
most effective static and most effective contextual

• Understand the constraints of your task
(effectiveness, efficiency) when you select
embeddings.

Tom Aarsen, “Train 400x faster Static Embedding Models with Sentence Transformers”, January 15, 2025.

https://huggingface.co/blog/static-embeddings

Multi-task training
• In addition to contextual representations, BERT

leveraged the concept of multi-task learning (MTL).

• Originally developed in the machine learning
community, MTL jointly optimizes model
parameters to perform well across a variety of tasks
[Caruana 1997].

• Often leads to strong improvements in effectiveness
by leveraging relevant representations between
tasks.

• Collobert and Weston [2008] applied to NLP.

Rich Caruana. Multitask learning. Machine Learning, 28:41---75, 1997.
Ronan Collobert and Jason Weston. A unified architecture for natural language processing: deep neural networks with multitask learning. In Proceedings of the 25th international conference on machine
learning, 2008.

Table 1. Performance of STL and MTL with one hidden layer on tasks in the 1D-ALVINN domain. The bold

entries in the STL columns are the STL runs that performed best. Differences statistically significant at 0.05 or

better are marked with an *.

ROOT-MEAN SQUARED ERROR ON TEST SET

TASK Single Task Backprop (STL) MTL Change MTL Change MTL

2HU 4HU 8HU 16HU 16HU to Best STL to Mean STL

1 or 2 Lanes .201 .209 .207 .178 .156 -12.4% * -21.5% *

Left Edge .069 .071 .073 .073 .062 -10.1% * -13.3% *

Right Edge .076 .062 .058 .056 .051 -8.9% * -19.0% *

Line Center .153 .152 .152 .152 .151 -0.7% -0.8%

Road Center .038 .037 .039 .042 .034 -8.1% * -12.8% *

Road Greylevel .054 .055 .055 .054 .038 -29.6% * -30.3% *

Edge Greylevel .037 .038 .039 .038 .038 2.7% 0.0%

Line Greylevel .054 .054 .054 .054 .054 0.0% 0.0%

Steering .093 .069 .087 .072 .058 -15.9% * -27.7% *

signals for all nine tasks, whereas the STL training patterns have training signals for only

one task at a time.

2.2. 1D-DOORS

1D-ALVINN is not a real domain; the data is generated with a simulator. To test MTL on a

more realistic problem, we created an object recognition domain similar in some respects to

1D-ALVINN. In 1D-DOORS, the main tasks are to locate doorknobs and to recognize door

types (single or double) in images of doors collected with a robot-mounted color camera.

Figure 3 shows several door images from the database. As with 1D-ALVINN, the problem

was simplified by using horizontal stripes from the images, one for the green channel and

one for the blue channel. Each stripe is 30 pixels wide (accomplished by applyingGaussian

smoothing to the original 150 pixel-wide image) and occurs at the vertical height in the

image where the doorknob is located. Ten tasks were used. These are:

horizontal location of doorknob single or double door

horizontal location of doorway center width of doorway

horizontal location of left door jamb horizontal location of right door jamb

width of left door jamb width of right door jamb

horizontal location of left edge of door horizontal location of right edge of door

As this is a real domain, the training signals for these tasks had to be acquired manually.

We used a mouse to click on the appropriate features in each image in the training and test

sets. Since it was necessary to process each image manually to acquire the training signals

for the two main tasks, it was not that difficult to acquire the training signals for the extra

tasks.

The difficulty of 1D-DOORS precludes running as exhaustive a set of experiments as

with 1D-ALVINN; comparison could be done only for the two tasks we considered most

important: doorknob location and door type. STL was tested on nets using 6, 24, and 96

poll: when will multi-task learning
hurt?

Multi-task training
• although MTL can be good in general, it can also

lead to under-performance when,

• task inconsistency: when tasks contradict in the
appropriate representations, gradients can compete

• task dominance: when some tasks have more data, those
representations can dominate the learned representations

• tends not to be as much of an issue in NLP because,

• fine-tuning can mitigate task inconsistency and
dominance

• language tasks have significant overlap

Sen Wu, Hongyang R. Zhang, and Christopher Ré. Understanding and improving information transfer in multi-task learning. In International conference on learning representations, 2020.

Published as a conference paper at ICLR 2020

Positive Transfer

Negative Transfer
−0.2

−0.1

0

0.1

0.2

Data samples of source task
2000 4000 6000 8000

Positive Transfer

Negative Transfer
−0.2

−0.1

0

0.1

0.2

Data samples of source task
2000 4000 6000 8000

Positive Transfer

Negative Transfer
−0.2

−0.1

0

0.1

0.2

Data samples of source task
2000 4000 6000 8000

Same covariance (Source: Task 2) Diff. covariance (Source: Task 3)

(a) Linear regression tasks (b) Logistic classification tasks (c) ReLU regression tasks

Ta
rg

et
 ta

sk
's

 P
er

f.:
 M

TL
 -

ST
L Source vs. target (Task 1):

Figure 3: Performance improvement of a target task (Task 1) by MTL with a source task vs. STL.
Red: positive transfer when the source is Task 2, which has the same covariance matrix with target.
Green: negative (to positive) transfer when the source is Task 3, which has a different covariance
from the target, as its # of samples increases. See the example below for the definition of each task.

Proposition 1. Let r � k. There exists an optimum B? and {A?

i
}k
i=1 of equation 3 where B?A?

i
=

✓i, for all i = 1, 2, . . . , k.

To illustrate the idea, as long as B? contains {✓i}ki=1 in its column span, there exists A?

i
such that

B?A?

i
= ✓i, which is optimal for equation 3 with minimum error. But this means no transfer

among any two tasks. This can hurt generalization if a task has limited data, in which case its STL
solution overfits training data, whereas the MTL solution can leverage other tasks’ data to improve
generalization. The proof of Proposition 1 and its extension to ReLU settings are in Appendix A.1.

Algorithmic consequence. The implication is that limiting the shared module’s capacity is nec-
essary to enforce information transfer. If the shared module is too small, then tasks may interfere
negatively with each other. But if it is too large, then there may be no transfer between tasks. In Sec-
tion 3.3, we verify the need to carefully choose model capacity on a wide range of neural networks
including CNN, LSTM and multi-layer perceptron.

2.3 TASK COVARIANCE

To show how to quantify task data similarity, we illustrate with two regression tasks under the linear
model without noise: y1 = X1✓1 and y2 = X2✓2. By Section 2.2, it is necessary to limit the
capacity of the shared module to enforce information transfer. Therefore, we consider the case of
r = 1. Hence, the shared module B is now a d-dimensional vector, and A1, A2 are both scalars.

A natural requirement of task similarity is for the STL models to be similar, i.e. |cos(✓1, ✓2)| to be
large. To see this, the optimal STL model for task 1 is (X>

1 X1)�1X>
1 y1 = ✓1. Hence if |cos(✓1, ✓2)|

is 1, then tasks 1 and 2 can share a model B 2 Rd which is either ✓1 or �✓1. The scalar A1 and A2

can then transform B to be equal to ✓1 and ✓2.

Is this requirement sufficient? Recall that in equation 3, the task data X1 and X2 are both multiplied
by B. If they are poorly “aligned” geometrically, the performance could suffer. How do we formal-
ize the geometry between task alignment? In the following, we show that the covariance matrices of
X1 and X2, which we define to be X>

1 X1 and X>
2 X2, captures the geometry. We fix |cos(✓1, ✓2)| to

be close to 1 to examine the effects of task covariances. In Appendix A.2.1 we fix task covariances
to examine the effects of model cosine similarity. Concretely, equation 3 reduces to:

max
B2Rd

h(B) = h X1B

kX1Bk , y1i
2 + h X2B

kX2Bk , y2i
2, (4)

where we apply the first-order optimality condition on A1 and A2 and simplify the equation. Specif-
ically, we focus on a scenario where task 1 is the source and task 2 is the target. Our goal is to
determine when the source transfers to the target positively or negatively in MTL. Determining the
type of transfer from task 2 to task 1 can be done similarly. Answering the question boils down to
studying the angle or cosine similarity between the optimum of equation 4 and ✓2.

Example. In Figure 3, we show that by varying task covariances and the number of samples, we can
observe both positive and negative transfers. The conceptual message is the same as Figure 2; we

4

Performance improvement of a target task (Task 1) by MTL with a source task vs.
STL. Red: positive transfer when the source is Task 2, which has the same
covariance matrix with target. Green: negative (to positive) transfer when the
source is Task 3, which has a different covariance from the target, as its # of samples
increases.

If your application involves learning
representations with multi-task learning,
pay attention to task correlations and
distribution

Representation bias
• Task dominance is one way that representations

can be influenced in unexpected ways by training.

• Learned representations can be influenced by,
• architecture
• labels
• data

• Social biases reflected in training data have been well-
documented [Kurita et al., 2019].

• More generally, training data representation can
significantly impact representations across a variety of
dimensions [Rolf et al., 2021]

Keita Kurita, Nidhi Vyas, Ayush Pareek, Alan W Black, and Yulia Tsvetkov. Measuring bias in contextualized word representations. In Marta R. Costa-jussà, Christian Hardmeier, Will Radford, and Kellie
Webster, editors, Proceedings of the first workshop on gender bias in natural language processing, 2019.
Esther Rolf, Theodora T Worledge, Benjamin Recht, and Michael Jordan. Representation matters: assessing the importance of subgroup allocations in training data. In Marina Meila and Tong Zhang,
editors, Proceedings of the 38th international conference on machine learning, volume 139 of Proceedings of Machine Learning Research, 9040--9051, , PMLR, 18--24 Jul 2021.

If your application involves using pre-
trained representations, make sure you
understand the implicit bias.

169

Category WEAT on GloVe WEAT on BERT Ours on BERT
Log Probability Bias Score

Pleasant/Unpleasant (Insects/Flowers) 1.543* 0.6688 0.8744*
Pleasant/Unpleasant (EA/AA) 1.012 1.003 0.8864*
Career/Family (Male/Female) 1.814* 0.5047 1.126*
Math/Arts (Male/Female) 1.061 0.6755 0.8495*
Science/Arts (Male/Female) 1.246* 0.8815 0.9572*

Table 3: Effect sizes of bias measurements on WEAT Stimuli. (* indicates significant at p < 0.01)

Gender Prior Prob. Avg. Predicted Prob.

Male 10.3% 11.5%
Female 9.8% 13.9%

Table 4: Probability of pronoun referring to neither
entity in a sentence of GPR

4 Case Study: Effects of Gender Bias on

Gendered Pronoun Resolution

Dataset We examined the downstream effects of
bias in BERT using the Gendered Pronoun Res-
olution (GPR) task (Webster et al., 2018). GPR
is a sub-task in co-reference resolution, where a
pronoun-containing expression is to be paired with
the referring expression. Since pronoun resolving
systems generally favor the male entities (Webster
et al., 2018), this task is a valid test-bed for our
study. We use the GAP dataset5 by Webster et al.
(2018), containing 8,908 human-labeled ambigu-
ous pronoun-name pairs, created from Wikipedia.
The task is to classify whether an ambiguous pro-
noun P in a text refers to entity A, entity B or nei-
ther. There are 1,000 male and female pronouns
in the training set each, with 103 and 98 of them
not referring to any entity in the sentence, respec-
tively.

Model We use the model suggested on Kaggle,6

inspired by Tenney et al. (2019). The model uses
BERT embeddings for P , A and B, given the con-
text of the input sentence. Next, it uses a multi-
layer perceptron (MLP) layer to perform a naive
classification to decide if the pronoun belongs to
A, B or neither. The MLP layer uses a single hid-
den layer with 31 dimensions, a dropout of 0.6 and
L2 regularization with weight 0.1.

Results Although the number of male pronouns
associated with no entities in the training data is

5
https://github.com/

google-research-datasets/gap-coreference

6
https://www.kaggle.com/mateiionita/

taming-the-bert-a-baseline

slightly larger, the model predicted the female pro-
noun referring to no entities with a significantly
higher probability (p = 0.007 on a permutation
test); see Table 4. As the training set is balanced,
we attribute this bias to the underlying BERT rep-
resentations.

We also investigate the relation between the
topic of the sentence and model’s ability to as-
sociate the female pronoun with no entity. We
first extracted 20 major topics from the dataset us-
ing non-negative matrix factorization (Lee and Se-
ung, 2001) (refer to Appendix for the list of top-
ics). We then compute the bias score for each
topic as the sum of the log probability bias score
for the top 15 most prevalent words of each topic
weighted by their weights within the topic. For
this, we use a generic template “[TARGET] are in-
terested in [ATTRIBUTE]” where TARGET is ei-
ther men or women. Next we compute a bias score
for each sample in the training data as the sum
of individual bias scores of topics present in the
sample, weighted by the topic weights. Finally,
we measured the Spearman correlation coefficient
to be 0.207 (which is statistically significant with
p = 4e � 11) between the bias scores for male
gender across all samples and the model’s proba-
bility to associate a female pronoun with no entity.
We conclude that models using BERT find it chal-
lenging to perform coreference resolution when
the gender pronoun is female and if the topic is
biased towards the male gender.

5 Real World Implications

In previous sections, we discussed that BERT has
human-like biases, which are propagated to down-
stream tasks. In this section, we discuss an-
other potential negative impact of using BERT in
a downstream model. Given that three quarters of
US employers now use social media for recruiting
job candidates (Segal, 2014), many applications
are filtered using job recommendation systems and
other AI-powered services. Zhao et al. (2018)

169

Category WEAT on GloVe WEAT on BERT Ours on BERT
Log Probability Bias Score

Pleasant/Unpleasant (Insects/Flowers) 1.543* 0.6688 0.8744*
Pleasant/Unpleasant (EA/AA) 1.012 1.003 0.8864*
Career/Family (Male/Female) 1.814* 0.5047 1.126*
Math/Arts (Male/Female) 1.061 0.6755 0.8495*
Science/Arts (Male/Female) 1.246* 0.8815 0.9572*

Table 3: Effect sizes of bias measurements on WEAT Stimuli. (* indicates significant at p < 0.01)

Gender Prior Prob. Avg. Predicted Prob.

Male 10.3% 11.5%
Female 9.8% 13.9%

Table 4: Probability of pronoun referring to neither
entity in a sentence of GPR

4 Case Study: Effects of Gender Bias on

Gendered Pronoun Resolution

Dataset We examined the downstream effects of
bias in BERT using the Gendered Pronoun Res-
olution (GPR) task (Webster et al., 2018). GPR
is a sub-task in co-reference resolution, where a
pronoun-containing expression is to be paired with
the referring expression. Since pronoun resolving
systems generally favor the male entities (Webster
et al., 2018), this task is a valid test-bed for our
study. We use the GAP dataset5 by Webster et al.
(2018), containing 8,908 human-labeled ambigu-
ous pronoun-name pairs, created from Wikipedia.
The task is to classify whether an ambiguous pro-
noun P in a text refers to entity A, entity B or nei-
ther. There are 1,000 male and female pronouns
in the training set each, with 103 and 98 of them
not referring to any entity in the sentence, respec-
tively.

Model We use the model suggested on Kaggle,6

inspired by Tenney et al. (2019). The model uses
BERT embeddings for P , A and B, given the con-
text of the input sentence. Next, it uses a multi-
layer perceptron (MLP) layer to perform a naive
classification to decide if the pronoun belongs to
A, B or neither. The MLP layer uses a single hid-
den layer with 31 dimensions, a dropout of 0.6 and
L2 regularization with weight 0.1.

Results Although the number of male pronouns
associated with no entities in the training data is

5
https://github.com/

google-research-datasets/gap-coreference

6
https://www.kaggle.com/mateiionita/

taming-the-bert-a-baseline

slightly larger, the model predicted the female pro-
noun referring to no entities with a significantly
higher probability (p = 0.007 on a permutation
test); see Table 4. As the training set is balanced,
we attribute this bias to the underlying BERT rep-
resentations.

We also investigate the relation between the
topic of the sentence and model’s ability to as-
sociate the female pronoun with no entity. We
first extracted 20 major topics from the dataset us-
ing non-negative matrix factorization (Lee and Se-
ung, 2001) (refer to Appendix for the list of top-
ics). We then compute the bias score for each
topic as the sum of the log probability bias score
for the top 15 most prevalent words of each topic
weighted by their weights within the topic. For
this, we use a generic template “[TARGET] are in-
terested in [ATTRIBUTE]” where TARGET is ei-
ther men or women. Next we compute a bias score
for each sample in the training data as the sum
of individual bias scores of topics present in the
sample, weighted by the topic weights. Finally,
we measured the Spearman correlation coefficient
to be 0.207 (which is statistically significant with
p = 4e � 11) between the bias scores for male
gender across all samples and the model’s proba-
bility to associate a female pronoun with no entity.
We conclude that models using BERT find it chal-
lenging to perform coreference resolution when
the gender pronoun is female and if the topic is
biased towards the male gender.

5 Real World Implications

In previous sections, we discussed that BERT has
human-like biases, which are propagated to down-
stream tasks. In this section, we discuss an-
other potential negative impact of using BERT in
a downstream model. Given that three quarters of
US employers now use social media for recruiting
job candidates (Segal, 2014), many applications
are filtered using job recommendation systems and
other AI-powered services. Zhao et al. (2018)

Geometry of embeddings
• Projection from one embedding to another

involves,

• compression: may throw away information during
embedding; what to throw away determined by the
training objective.

• distortion: will expand or contract representations
during embedding; how to distort determined by the
training objective.

consider the earth…

Geometry of embeddings
• Projection from one embedding to another

involves,

• compression: may throw away information during
embedding; what to throw away determined by the
training objective.

• distortion: will expand or contract representations
during embedding; how to distort determined by the
training objective.

is this a good embedding into two dimensions?

Geometry of embeddings
• Projection from one embedding to another

involves,

• compression: may throw away information during
embedding; what to throw away determined by the
training objective.

• distortion: will expand or contract representations
during embedding; how to distort determined by the
training objective.

is this a good embedding into two dimensions?

Geometry of embeddings
• Projection from one embedding to another

involves,

• compression: may throw away information during
embedding; what to throw away determined by the
training objective.

• distortion: will expand or contract representations
during embedding; how to distort determined by the
training objective.

is this a good embedding into two dimensions?

Geometry of embeddings
• Projection from one embedding to another

involves,

• compression: may throw away information during
embedding; what to throw away determined by the
training objective.

• distortion: will expand or contract representations
during embedding; how to distort determined by the
training objective.

is this a good embedding into two dimensions?

Geometry of embeddings
• Projection from one embedding to another

involves,

• compression: may throw away information during
embedding; what to throw away determined by the
training objective.

• distortion: will expand or contract representations
during embedding; how to distort determined by the
training objective.

• Transformer-based embeddings tend to be
anisotropic, isolated to a narrow cone [Gao et
al., 2019; Ethayarajh 2019; Meng et al., 2021]

Jun Gao, Di He, Xu Tan, Tao Qin, Liwei Wang, and Tieyan Liu. Representation degeneration problem in training natural language generation models. In International conference on learning representations, 2019.
Kawin Ethayarajh. How contextual are contextualized word representations? Comparing the geometry of BERT, ELMo, and GPT-2 embeddings. In Kentaro Inui, Jing Jiang, Vincent Ng, and Xiaojun Wan, editors,
Proceedings of the 2019 conference on empirical methods in natural language processing and the 9th international joint conference on natural language processing (emnlp-ijcnlp), 2019
Yu Meng, Chenyan Xiong, Payal Baja, Saurabh Tiwary, Paul Bennett, Jiawei Han, and Xia Song. Coco-lm: correcting and contrasting text sequences for language model pretraining. In Proceedings of the 35th
international conference on neural information processing systems, 2021.

Published as a conference paper at ICLR 2019

(a) Vanilla Transformer (b) Word2Vec (c) Classification

Figure 1: 2D visualization. (a). Visualization of word embeddings trained from vanilla Trans-
former (Vaswani et al., 2017) in English!German translation task. (b). Visualization of word
embeddings trained from Word2Vec (Mikolov et al., 2013). (c). Visualization of hidden states and
category embedding of a classification task, where different colors stand for different categories and
the blue triangles denote for category embeddings.

word embeddings trained from Word2Vec (Mikolov et al., 2013) and the parameters in the softmax
layer of a classical classification task (we refer it as categorical embedding). As shown in Figure
1, the word embeddings learnt from Word2Vec (Figure 1(b)) and the softmax parameters learnt
from the classification task (Figure 1(c)) are diversely distributed around the origin using SVD
projection; in contrast, the word embeddings in our studied model (Figure 1(a)) degenerated into
a narrow cone. Furthermore, we find the embeddings of any two words in our studied models are
positively correlated. Such phenomena are very different from those in other tasks and deteriorate
model’s capacity. As the role of the softmax layer, those parameters cannot lead to a large margin
prediction for good generalization. As the role of word embeddings, the parameters do not have
enough capacity to model the diverse semantics in natural languages (Yang et al., 2018; McCann
et al., 2017).

We call the problem described above the representation degeneration problem. In this paper, we try
to understand why the problem happens and propose a practical solution to address it.

We provide some intuitive explanation and theoretical justification for the problem. Intuitively
speaking, during the training process of a model with likelihood loss, for any given hidden state,
the embedding of the corresponding ground-truth word will be pushed towards the direction of the
hidden state in order to get a larger likelihood, while the embeddings of all other words will be
pushed towards the negative direction of the hidden state to get a smaller likelihood. As in natural
language, word frequency is usually very low comparing to the size of a large corpus, the embedding
of the word will be pushed towards the negative directions of most hidden states which drastically
vary. As a result, the embeddings of most words in the vocabulary will be pushed towards similar
directions negatively correlated with most hidden states and thus are clustered together in a local
region of the embedding space.

From the theoretical perspective, we first analyze the extreme case of non-appeared words. We
prove that the representation degeneration problem is related to the structure of hidden states: the
degeneration appears when the convex hull of the hidden states does not contain the origin and such
condition is likely to happen when training with layer normalization (Ba et al., 2016; Vaswani et al.,
2017; Merity et al., 2018). We further extend our study to the optimization of low-frequency words
in a more realistic setting. We show that, under mild conditions, the low-frequency words are likely
to be trained to be close to each other during optimization, and thus lie in a local region.

Inspired by the empirical analysis and theoretical insights, we design a novel way to mitigate the
degeneration problem by regularizing the word embedding matrix. As we observe that the word em-
beddings are restricted into a narrow cone, we try to directly increase the size of the aperture of the
cone, which can be simply achieved by decreasing the similarity between individual word embed-
dings. We test our method on two tasks, language modeling and machine translation. Experimental
results show that the representation degeneration problem is mitigated, and our algorithm achieves
superior performance over the baseline algorithms, e.g., with 2.0 point perplexity improvement on

2

Published as a conference paper at ICLR 2019

(a) Vanilla Transformer (b) Word2Vec (c) Classification

Figure 1: 2D visualization. (a). Visualization of word embeddings trained from vanilla Trans-
former (Vaswani et al., 2017) in English!German translation task. (b). Visualization of word
embeddings trained from Word2Vec (Mikolov et al., 2013). (c). Visualization of hidden states and
category embedding of a classification task, where different colors stand for different categories and
the blue triangles denote for category embeddings.

word embeddings trained from Word2Vec (Mikolov et al., 2013) and the parameters in the softmax
layer of a classical classification task (we refer it as categorical embedding). As shown in Figure
1, the word embeddings learnt from Word2Vec (Figure 1(b)) and the softmax parameters learnt
from the classification task (Figure 1(c)) are diversely distributed around the origin using SVD
projection; in contrast, the word embeddings in our studied model (Figure 1(a)) degenerated into
a narrow cone. Furthermore, we find the embeddings of any two words in our studied models are
positively correlated. Such phenomena are very different from those in other tasks and deteriorate
model’s capacity. As the role of the softmax layer, those parameters cannot lead to a large margin
prediction for good generalization. As the role of word embeddings, the parameters do not have
enough capacity to model the diverse semantics in natural languages (Yang et al., 2018; McCann
et al., 2017).

We call the problem described above the representation degeneration problem. In this paper, we try
to understand why the problem happens and propose a practical solution to address it.

We provide some intuitive explanation and theoretical justification for the problem. Intuitively
speaking, during the training process of a model with likelihood loss, for any given hidden state,
the embedding of the corresponding ground-truth word will be pushed towards the direction of the
hidden state in order to get a larger likelihood, while the embeddings of all other words will be
pushed towards the negative direction of the hidden state to get a smaller likelihood. As in natural
language, word frequency is usually very low comparing to the size of a large corpus, the embedding
of the word will be pushed towards the negative directions of most hidden states which drastically
vary. As a result, the embeddings of most words in the vocabulary will be pushed towards similar
directions negatively correlated with most hidden states and thus are clustered together in a local
region of the embedding space.

From the theoretical perspective, we first analyze the extreme case of non-appeared words. We
prove that the representation degeneration problem is related to the structure of hidden states: the
degeneration appears when the convex hull of the hidden states does not contain the origin and such
condition is likely to happen when training with layer normalization (Ba et al., 2016; Vaswani et al.,
2017; Merity et al., 2018). We further extend our study to the optimization of low-frequency words
in a more realistic setting. We show that, under mild conditions, the low-frequency words are likely
to be trained to be close to each other during optimization, and thus lie in a local region.

Inspired by the empirical analysis and theoretical insights, we design a novel way to mitigate the
degeneration problem by regularizing the word embedding matrix. As we observe that the word em-
beddings are restricted into a narrow cone, we try to directly increase the size of the aperture of the
cone, which can be simply achieved by decreasing the similarity between individual word embed-
dings. We test our method on two tasks, language modeling and machine translation. Experimental
results show that the representation degeneration problem is mitigated, and our algorithm achieves
superior performance over the baseline algorithms, e.g., with 2.0 point perplexity improvement on

2

word2vec transformer

Geometry of embeddings
• Projection from one embedding to another

involves,

• compression: may throw away information during
embedding; what to throw away determined by the
training objective.

• distortion: will expand or contract representations
during embedding; how to distort determined by the
training objective.

• Transformer-based embeddings tend to be
anisotropic, isolated to a narrow cone [Gao et
al., 2019; Ethayarajh 2019; Meng et al., 2021]

Jun Gao, Di He, Xu Tan, Tao Qin, Liwei Wang, and Tieyan Liu. Representation degeneration problem in training natural language generation models. In International conference on learning representations, 2019.
Kawin Ethayarajh. How contextual are contextualized word representations? Comparing the geometry of BERT, ELMo, and GPT-2 embeddings. In Kentaro Inui, Jing Jiang, Vincent Ng, and Xiaojun Wan, editors,
Proceedings of the 2019 conference on empirical methods in natural language processing and the 9th international joint conference on natural language processing (emnlp-ijcnlp), 2019
Yu Meng, Chenyan Xiong, Payal Baja, Saurabh Tiwary, Paul Bennett, Jiawei Han, and Xia Song. Coco-lm: correcting and contrasting text sequences for language model pretraining. In Proceedings of the 35th
international conference on neural information processing systems, 2021.

Figure 1: In almost all layers of BERT, ELMo, and GPT-2, the word representations are anisotropic (i.e., not
directionally uniform): the average cosine similarity between uniformly randomly sampled words is non-zero.
The one exception is ELMo’s input layer; this is not surprising given that it generates character-level embeddings
without using context. Representations in higher layers are generally more anisotropic than those in lower ones.

ELMo as well, though there are exceptions: for ex-
ample, the anisotropy in BERT’s penultimate layer
is much higher than in its final layer.

Isotropy has both theoretical and empirical ben-
efits for static word embeddings. In theory, it
allows for stronger “self-normalization” during
training (Arora et al., 2017), and in practice, sub-
tracting the mean vector from static embeddings
leads to improvements on several downstream
NLP tasks (Mu et al., 2018). Thus the extreme
degree of anisotropy seen in contextualized word
representations – particularly in higher layers –
is surprising. As seen in Figure 1, for all three
models, the contextualized hidden layer represen-
tations are almost all more anisotropic than the in-
put layer representations, which do not incorpo-
rate context. This suggests that high anisotropy is
inherent to, or least a by-product of, the process of
contextualization.

4.2 Context-Specificity

Contextualized word representations are more
context-specific in higher layers. Recall from
Definition 1 that the self-similarity of a word, in
a given layer of a given model, is the average co-
sine similarity between its representations in dif-
ferent contexts, adjusted for anisotropy. If the
self-similarity is 1, then the representations are
not context-specific at all; if the self-similarity is
0, that the representations are maximally context-
specific. In Figure 2, we plot the average self-
similarity of uniformly randomly sampled words

in each layer of BERT, ELMo, and GPT-2. For
example, the self-similarity is 1.0 in ELMo’s in-
put layer because representations in that layer are
static character-level embeddings.

In all three models, the higher the layer, the
lower the self-similarity is on average. In other
words, the higher the layer, the more context-
specific the contextualized representations. This
finding makes intuitive sense. In image classifica-
tion models, lower layers recognize more generic
features such as edges while upper layers recog-
nize more class-specific features (Yosinski et al.,
2014). Similarly, upper layers of LSTMs trained
on NLP tasks learn more task-specific represen-
tations (Liu et al., 2019a). Therefore, it fol-
lows that upper layers of neural language mod-
els learn more context-specific representations, so
as to predict the next word for a given context
more accurately. Of all three models, representa-
tions in GPT-2 are the most context-specific, with
those in GPT-2’s last layer being almost maxi-
mally context-specific.

Stopwords (e.g., ‘the’, ‘of’, ‘to’) have among the
most context-specific representations. Across
all layers, stopwords have among the lowest self-
similarity of all words, implying that their con-
textualized representations are among the most
context-specific. For example, the words with the
lowest average self-similarity across ELMo’s lay-
ers are ‘and’, ‘of’, ‘’s’, ‘the’, and ‘to’. This is rel-
atively surprising, given that these words are not
polysemous. This finding suggests that the variety

Geometry of embeddings
• Projection from one embedding to another

involves,

• compression: may throw away information during
embedding; what to throw away determined by the
training objective.

• distortion: will expand or contract representations
during embedding; how to distort determined by the
training objective.

• Transformer-based embeddings tend to be
anisotropic, isolated to a narrow cone [Gao et
al., 2019; Ethayarajh 2019; Meng et al., 2021]

Jun Gao, Di He, Xu Tan, Tao Qin, Liwei Wang, and Tieyan Liu. Representation degeneration problem in training natural language generation models. In International conference on learning representations, 2019.
Kawin Ethayarajh. How contextual are contextualized word representations? Comparing the geometry of BERT, ELMo, and GPT-2 embeddings. In Kentaro Inui, Jing Jiang, Vincent Ng, and Xiaojun Wan, editors,
Proceedings of the 2019 conference on empirical methods in natural language processing and the 9th international joint conference on natural language processing (emnlp-ijcnlp), 2019
Yu Meng, Chenyan Xiong, Payal Baja, Saurabh Tiwary, Paul Bennett, Jiawei Han, and Xia Song. Coco-lm: correcting and contrasting text sequences for language model pretraining. In Proceedings of the 35th
international conference on neural information processing systems, 2021.

3.1 Preliminary on Language Model Pretraining

In this work we focus on pretraining BERT-style bidirectional Transformer encoders [11] that are
widely used in language representation tasks. We first recap the masked language modeling (MLM)
task introduced by BERT [11] and then discuss the pretraining framework of ELECTRA [7].

BERT Pretraining uses the masked language modeling task (MLM) [11], which is to take an input
sequence Xorig = [xorig

1 , . . . , xorig
i , . . . , xorig

n], with 15% random tokens replaced by [MASK] symbols
(e.g., the i-th token), and train the model to predict the original tokens at the masked positions:

h
xorig

1 , . . . ,[MASK]i, . . . , x
orig
n

i
Transformer������! H

MLM Head������! pMLM(x|hi),

where the Transformer generates contextualized representations H = {hi}n
i=1. The MLM Head

predicts the masked token from the vocabulary V using the hidden representation hi and token em-
beddings x. The pretraining minimizes the MLM loss on the set of masked positions M. Specifically,

pMLM(x|hi) =
exp(x>

hi)P
xt2V exp(x>

t hi)
; LMLM = E

�
X

i2M
log pMLM

⇣
xorig

i

��hi

⌘!
.

ELECTRA Pretraining uses two Transformers, a “generator” pretrained by MLM, and a “discrimi-
nator” pretrained using the generator’s outputs. We refer them as auxiliary and main Transformers,
as the former is discarded after pretraining and the latter may be trained by “generative” tasks too.

The auxiliary model outputs a corrupted sequence XMLM by sampling from its predicted probability:

xMLM
i ⇠ pMLM (x|hi) , if i 2 M ; xMLM

i = xorig
i , else. (1)

The masked positions are replaced by sampled tokens considered plausible in context by the auxiliary
Transformer, which are more deceiving than random replacements. ELECTRA uses a skinnier
auxiliary network (e.g., hidden dimension is 1/3 of the main model) to control the signal difficulty.

The main Transformer takes XMLM and classifies the replaced tokens:

XMLM Main Transformer���������! H
RTD Head�����! pRTD

⇣
(xMLM

i = xorig
i)
��hi

⌘
,

where (·) is the indicator function. The Replaced Token Detection (RTD) head uses a sigmoid linear
layer to output the binary probability, and the main Transformer is trained with binary cross entropy
loss. The RTD task is trained on all tokens instead of masked ones and improves efficiency.

The two Transformers are pretrained jointly. The auxiliary model gradually generates more realistic
replacement tokens and the main model learns to better detect them. This forms a natural learning
curriculum and significantly improves ELECTRA’s accuracy in downstream tasks [7].

3.2 Challenges of ELECTRA-Style Pretraining

0.00 0.25 0.50 0.75 1.00
Cosine Similarity

0

10

20

E
st

im
a
te

d
D

en
si

ty

random

similar

(a) RoBERTa. (b) ELECTRA.

Figure 1: Cosine similarity distributions of ran-
dom/similar sequence pairs using [CLS] embed-
dings from pretrained models. Histograms/curves
are distribution bins/kernel density estimates.

Missing Language Modeling Benefits. The
classification task in ELECTRA is simpler and
more stable [61], but raises two challenges. The
first is the lack of language modeling capability
which is a necessity in some tasks [6]. For exam-
ple, prompt-based learning requires a language
model to generate labels [15, 33, 45, 46]. The
second is that the binary classification task may
not be sufficient to capture certain word-level
semantics that are critical for token-level tasks.

Squeezing Representation Space. Another
challenge is that the representations from
Transformer-based language models often reside
in a narrow cone, where two random sentences
have high similarity scores (lack of uniformity),
and closely related sentences may have more different representations (lack of alignment) [14, 16, 30].

3

Embedding visualization
• t-SNE is the dominant method of visualizing

embeddings.

• Preserves local neighborhoods by converting
high-dimensional distances into probabilities
representing how likely points are to be
neighbors, then arranges points in 2D so
similar items stay close together

• embeddings are already a projection

• t-SNE projects further into two-dimensional
space.

Laurens van der Maaten and Geoffrey Hinton. Visualizing data using t-sne. Journal of Machine Learning Research, 9(86):2579--2605, 2008.

Visualization of 6,000 digits from the MNIST data set produced by the
random walk version of t-SNE (employing all 60,000 digit images)

poll: t-SNE can be deceptive
when…

Hyperparameters matter
t-SNE

Martin Wattenberg, Fernanda Viégas, and Ian Johnson. How to use t-sne effectively. Distill, 2016.

Cluster sizes in a t-SNE plot mean nothing
t-SNE

Martin Wattenberg, Fernanda Viégas, and Ian Johnson. How to use t-sne effectively. Distill, 2016.

Distances between clusters might not mean anything
t-SNE

Martin Wattenberg, Fernanda Viégas, and Ian Johnson. How to use t-sne effectively. Distill, 2016.

Random noise doesn’t always look random
t-SNE

Martin Wattenberg, Fernanda Viégas, and Ian Johnson. How to use t-sne effectively. Distill, 2016.

t-SNE

Martin Wattenberg, Fernanda Viégas, and Ian Johnson. How to use t-sne effectively. Distill, 2016.

Hallucinating shapes

Sparsity
• So far, we’ve been discussing dense embeddings.

poll: we prefer dense
representations when…

poll: we prefer sparse
representations when…

Sparsity
• So far, we’ve been discussing dense embeddings.

• Dense representations
• native density: sensor readings
• learned density: lower-dimensional projections; distributed representations
• supports generalization; more limited memorization
• efficiency reduces with dimensionality

• Sparse representations
• native sparsity: one-hot representations; tf.idf vectors
• learned sparsity: directly learn or post-process representations to ensure sparsity
• supports memorization; more limited generalization
• efficiency reduces with density

Wide and deep models
Hybrid representations

Heng-Tze Cheng, Levent Koc, Jeremiah Harmsen, Tal Shaked, Tushar Chandra, Hrishi Aradhye, Glen Anderson, Greg Corrado, Wei Chai, Mustafa Ispir, Rohan Anil, Zakaria Haque, Lichan Hong, Vihan
Jain, Xiaobing Liu, and Hemal Shah. Wide & deep learning for recommender systems. In Proceedings of the 1st workshop on deep learning for recommender systems, DLRS 2016.

can combine benefits of sparse feature memorization with generalization from deep networks.

Wide and deep models
Hybrid representations

Heng-Tze Cheng, Levent Koc, Jeremiah Harmsen, Tal Shaked, Tushar Chandra, Hrishi Aradhye, Glen Anderson, Greg Corrado, Wei Chai, Mustafa Ispir, Rohan Anil, Zakaria Haque, Lichan Hong, Vihan
Jain, Xiaobing Liu, and Hemal Shah. Wide & deep learning for recommender systems. In Proceedings of the 1st workshop on deep learning for recommender systems, DLRS 2016.

memorization

Wide network
Hybrid representations

• wide part is a linear model that captures memorization
• learns explicit co-occurrence patterns between features (e.g., user-item interactions, popular item biases).
• memorizes frequent item-user interactions (e.g., "User A likes Action movies").
• uses feature crosses (e.g., "Users in California like Surfing gear").
• handles cold-start issues better when engineered features are useful.

• examples
• user id (~m features), item id (~n features)
• user id x item id (m x n features)

• when it is helpful
• categorical features with strong co-occurrence patterns.
• recommendation settings where past interactions dictate behavior (e.g., repeat purchases).

• limitations
• cannot generalize well to unseen feature combinations (e.g., new items, new users).
• requires manual feature engineering (e.g., defining which features to cross).

Heng-Tze Cheng, Levent Koc, Jeremiah Harmsen, Tal Shaked, Tushar Chandra, Hrishi Aradhye, Glen Anderson, Greg Corrado, Wei Chai, Mustafa Ispir, Rohan Anil, Zakaria Haque, Lichan Hong, Vihan
Jain, Xiaobing Liu, and Hemal Shah. Wide & deep learning for recommender systems. In Proceedings of the 1st workshop on deep learning for recommender systems, DLRS 2016.

Wide and deep models
Hybrid representations

Heng-Tze Cheng, Levent Koc, Jeremiah Harmsen, Tal Shaked, Tushar Chandra, Hrishi Aradhye, Glen Anderson, Greg Corrado, Wei Chai, Mustafa Ispir, Rohan Anil, Zakaria Haque, Lichan Hong, Vihan
Jain, Xiaobing Liu, and Hemal Shah. Wide & deep learning for recommender systems. In Proceedings of the 1st workshop on deep learning for recommender systems, DLRS 2016.

memorization generalization

Deep network
Hybrid representations

• deep part captures generalization by learning complex, nonlinear relationships between features.

• automatically discovers feature interactions that not explicitly engineered in the wide part.

• embedding layer
• converts sparse features (e.g., individual user/item IDs) into dense vectors.
• user 123 → [0.1, -0.3, 0.7, ...]

• deep network
• stack of fully connected layers

• when it is helpful
• latent relationships between features (e.g., "Users who like X tend to like Y, even if never co-occurring in history").
• unseen users/items (generalization through embeddings).
• unknown feature interactions (rather than manually defining feature crosses in wide).

• when it is helpful
• Requires more data than the wide model to generalize well.
• Harder to interpret than the wide model.

Heng-Tze Cheng, Levent Koc, Jeremiah Harmsen, Tal Shaked, Tushar Chandra, Hrishi Aradhye, Glen Anderson, Greg Corrado, Wei Chai, Mustafa Ispir, Rohan Anil, Zakaria Haque, Lichan Hong, Vihan
Jain, Xiaobing Liu, and Hemal Shah. Wide & deep learning for recommender systems. In Proceedings of the 1st workshop on deep learning for recommender systems, DLRS 2016.

Wide and deep models
Hybrid representations

Heng-Tze Cheng, Levent Koc, Jeremiah Harmsen, Tal Shaked, Tushar Chandra, Hrishi Aradhye, Glen Anderson, Greg Corrado, Wei Chai, Mustafa Ispir, Rohan Anil, Zakaria Haque, Lichan Hong, Vihan
Jain, Xiaobing Liu, and Hemal Shah. Wide & deep learning for recommender systems. In Proceedings of the 1st workshop on deep learning for recommender systems, DLRS 2016.

memorization generalization
memorization and

generalization

Wide and deep models
Hybrid representations

Heng-Tze Cheng, Levent Koc, Jeremiah Harmsen, Tal Shaked, Tushar Chandra, Hrishi Aradhye, Glen Anderson, Greg Corrado, Wei Chai, Mustafa Ispir, Rohan Anil, Zakaria Haque, Lichan Hong, Vihan
Jain, Xiaobing Liu, and Hemal Shah. Wide & deep learning for recommender systems. In Proceedings of the 1st workshop on deep learning for recommender systems, DLRS 2016.

Next time
• moving from embeddings to retrieval…

