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Use of Language Models

Scribe notes

Using a language model to generate any part of a homework answer, scribe notes, and project reports
will be considered a violation of academic integrity. To reiterate, all written words in your homework,
scribe notes, and project reports should be written by yourself, without the use of Al (unless you are
quoting AT outputs as part of your answer).

You may however use Al to learn more about the subject material of the class and to help you write
code. If you do use AI systems to help with the homework, please fill out the “Use of AI” question on
the homework to help the instructors understand your usage. Use of AI without making an honest
attempt at answering this question will be considered a violation of academic integrity:

If you have submitted scribe notes and were confused by the AI use
policy and would like to prepare new scribe notes, you have until
January 30 to submit a new set of notes.



poll: an embedding is...



Embeddings

Local representations

* A neural network implements a parameterized
function defined as a composition of
transformations between vector spaces (or
tensor spaces).

* During inferences, we are repeatedly projecting
vectors between spaces of different dimensionalities.

* Local representation: When developing a
system, we often have elements that are
represented in raw, externally defined
coordinate systems that do not directly reflect
their semantic or latent structure.

Geoftrey E. Hinton. Distributed representations. Technical report CMU-CS-84-157, Carnegie Mellon University, 1984.

elements representation
words one-hot vector in |VI-dimensional space
documents sequence of words
users one-hot vector in |Ul-dimensional space
sessions sequence of turns
images pixel values



Embeddings

Distributed representations

A distributed representation is a mapping from a local, symbolic, or discrete representation to a continuous
internal representation that supports generalization and eflicient computation.

One-hot projection (words, user ids): A learned mapping from a sparse, high-dimensional indicator space to a
dense, typically lower-dimensional continuous space.

Sequence projection (strings, sessions): A function that maps an ordered sequence of discrete elements to a
fixed-dimensional vector, typically via composition operators such as recurrence, attention, pooling, or
convolution, while encoding order and context.

Graph projection (social networks): A mapping from nodes (and their neighborhoods or roles) in a graph to
vectors, where geometric proximity reflects structural similarity, connectivity, or shared context in the graph.

Spatial projection (images): A mapping from structured spatial inputs to vectors that preserve local spatial
correlations and hierarchical features, typically using convolutional or patch-based architectures.

Geoftrey E. Hinton. Distributed representations. Technical report CMU-CS-84-157, Carnegie Mellon University, 1984.



poll: embeddings can be used for...



Embeddings

Uses

* Generalization and transfer: embeddings act as reusable intermediate representations that enable
transfer across languages, tasks, domains, and modalities, often serving as inputs to downstream
models with minimal task-specific supervision.

* Retrieval: embedding externally-defined elements into a single, denser vector space, allows their
indexing and retrieval. Retrieval backends often use dense vectors to represent documents,
passages, sentences, images.

* Evaluation: embeddings capture semantic similarity not supported by lexical evaluation metrics.
Soft metrics (e.g., Bertscore) use dense vectors to represent words.

Ronan Collobert and Jason Weston. A unified architecture for natural language processing: deep neural networks with multitask learning. In Proceedings of the 25th international conference on machine
learning, 2008.

Po-Sen Huang, Xiaodong He, Jianfeng Gao, Li Deng, Alex Acero, and Larry Heck. Learning deep structured semantic models for web search using clickthrough data. In Proceedings of the 22nd acm
international conference on information & knowledge management, 2013.

Tianyi Zhang, Varsha Kishore, Felix Wu, Kilian Q. Weinberger, and Yoav Artzi. Bertscore: evaluating text generation with bert. In International conference on learning representations, 2020.



poll: embeddings were invented in...



Embeddings

History

o {Salton 1963} Vector Space Model. Documents embedded into [VI-dimensional space as tf.idf-weighted
vectors. Sequence information not preserved.

» {Switzer 1964} Dimensionality Reduction. Using factor analysis to capture semantic similarity between
words.

* {Hinton 1984} Distributed Representations. Conceptual foundation for learned, distributed meaning
in neural networks.

* [Deerwester et al., 1990} Latent Semantic Indexing. Dense latent representations via matrix
reconstruction.

* {Hofmann 1999} Probabilistic Latent Semantic Indexing. Dense linear representation via latent
variable modeling.

Gerard Salton. Associative document retrieval techniques using bibliographic information. Journal of the ACM, 10(4):440--457, 1963.

Paul Switzer. Vector images in document retrieval. In Proceedings of the symposium on statistical association methods for mechanical documentation, 1964.

Geoftrey E. Hinton. Distributed representations. Technical report CMU-CS-84-157, Carnegie Mellon University, 1984.

Scott C. Deerwester, Susan T. Dumais, Thomas K. Landauer, George W. Furnas, and Richard A. Harshman. Indexing by latent semantic analysis. Journal of the American Society of Information Science, 41(6):391-407, 1990.
Thomas Hofmann. Probabilistic latent semantic indexing. In Sigir '99: proceedings of the 22nd annual international acm sigir conference on research and development in information retrieval, 50--57, New York, N'Y, USA, 1999.



Embeddings

History
 {Bengio et al., 2003} Neural Language Models. Learned embeddings for generalization in NLP.

 {Collobert and Weston, 2008} Multitask representation learning. Word embeddings based on
performance across multiple tasks.

» [Mikolov et al., 2013; Pennington et al., 2014} Word embeddings (wordzvec, GloVe). Scalable
neural and matrix-factorization-based methods for learning from co-occurrence statistics.

Up to this point, word embeddings were static, a representation did
not change as a function of the words around it.

Yoshua Bengio, Réjean Ducharme, Pascal Vincent, and Christian Janvin. A neural probabilistic language model. J. Mach. Learn. Res., 3:1137--1155, March 2003.

Ronan Collobert and Jason Weston. A unified architecture for natural language processing: deep neural networks with multitask learning. In Proceedings of the 25th international conference on machine learning, ICML
'08, 160—167, New York, NY, USA, 2008.

Tomas Mikolov, Kai Chen, Greg Corrado, and Jeffrey Dean. Efficient estimation of word representations in vector space. In Workshop proceedings of the 2013 international conference on learning representations, 2013.
Jeffrey Pennington, Richard Socher, and Christopher D. Manning. Glove: global vectors for word representation. In Empirical methods in natural language processing (emnlp), 1532-1543, 2014.



poll: static embeddings are bad
because...



The problem with static embeddings

* Ambiguity

* A word can mean multiple different things, based on the topical

context. We conclude that with probability about 94% (51/54),

two polysemous nouns drawn from the same article will
have the same sense. In fact, the experiment tested a

A word can mean mUItiple different thiﬂgS, based on its particularly difficult case, since it did not include any

tical rol unambiguous words. If we assume a mixture of 60% un-
graminatical roic. ambiguous words and 40% polysemous words, then the

probability moves from 94% to 100% x .60+ 94% x .40 =
98%. In other words, there is a very strong tendency

e Intuition for a solution (98%) for multiple uses of a word to share the same sense

in well-written coherent discourse.

* Knowing the context of a word (topical, grammatical), can help
disambiguate its meaning.

* “One sense per discourse”: An ambiguous word will have a
single sense within a document (or dialogue) {Gale et al., 1992}

William A. Gale, Kenneth W. Church, and David Yarowsky. One sense per discourse. In Proceedings of the workshop on speech and natural language, HLT '91, 233237, Stroudsburg, PA, USA, 1992. ,
Association for Computational Linguistics.



Topic-specific word embeddings

* “one sense per discourse” suggests that knowing
the topic can inform a word’s representation.

global local
cutting tax
* given a string x, how do we determine the right squeeze - deficit
. reduce vote
t()plC.> slash budget
reduction reduction
spend house
* information retrieval provides a way to, given x, lover bil
. . alve plan
retrieve topically-relevant documents. soften  spend
freeze billion
® can use thCSC dOCumentS to train Word Figure 3: Terms similar to ‘cut’ for a word2vec
. . . model trained on a general news corpus and
embeddlngs USIIlg static methOdS. another trained only on documents related to

‘gasoline tax’.

* although the embedding is static, it changes based on x.

Fernando Diaz, Bhaskar Mitra, and Nick Craswell. Query expansion with locally-trained word embeddings. In Proceedings of the §4th annual meeting of the association for computational linguistics, 2016.



Topic-specific word embeddings

* “one sense per discourse” suggests that knowing
the topic can inform a word’s representation.

* given a string x, how do we determine the right
topic?

* information retrieval provides a way to, given x,
retrieve topically-relevant documents.

e can use these documents to train word
embeddings using static methods.

* although the embedding is static, it changes based on x.

Fernando Diaz, Bhaskar Mitra, and Nick Craswell. Query expansion with locally-trained word embeddings. In Proceedings of the §4th annual meeting of the association for computational linguistics, 2016.



The problems with topic-specific embeddings

* Topic-specific word embeddings are bad because...

* limited by retrieval system

Previous work [Gale, Church and Yarowsky, 1992] showed that with
e need to learn a new embedding for every sentence high probability a polysemous word has one sense per discourse.
In this paper we show that for certain definitions of collocation, a
polysemous word exhibits essentially only one sense per collocation.
We test this empirical hypothesis for several definitions of sense and
collocation, and discover that it holds with 90-99% accuracy for
binary ambiguities. We utilize this property in a disambiguation
algorithm that achieves precision of 92% using combined models of

* “One sense per collocation”: An ambiguous word will very local contex.
have a single sense within a local context (e.g., phrase,
sentence) [ Yarowsky et al., 1993}

* does not capture local context

* “You shall know a word by the company it keeps!” {Firth 19571

David Yarowsky. One sense per collocation. In Proceedings of the workshop on human language technology, HLT '93, 266--271, Stroudsburg, PA, USA, 1993. , Association for Computational Linguistics.
J.R. Firth. Studies in linguistic analysis: special volume of the philosogical society. Special Volume of the Philological Society. Blackwell, 1957.



Contextual Representations

* Contextual representations adapt a word’s
representation based on neighboring words.

 ELMo {Peters et al., 2018} uses bidirectional
LSTMs to capture context from neighboring words.

 BERT {Devlin et al., 2019} uses bidirectional
transformers to capture context from neighboring
words.

Matthew E. Peters, Mark Neumann, Mohit Iyyer, Matt Gardner, Christopher Clark, Kenton Lee, and Luke Zettlemoyer. Deep contextualized word representations. In Marilyn Walker, Heng Ji, and
Amanda Stent, editors, Proceedings of the 2018 conference of the north American chapter of the association for computational linguistics: human language technologies, volume 1 (long papers), 2018.
Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. BERT: pre-training of deep bidirectional transformers for language understanding. In Proceedings of the 2019 conference of the north
American chapter of the association for computational linguistics: human language technologies, volume 1 (long and short papers), 2019.



Contextual Representations

Average Self-Similarity (anisotropy-adjusted)
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Figure 2: The average cosine similarity between representations of the same word in different contexts 1s called
the word’s self-similarity (see Definition 1). Above, we plot the average self-similarity of uniformly randomly
sampled words after adjusting for anisotropy (see section 3.4). In all three models, the higher the layer, the lower
the self-similarity, suggesting that contextualized word representations are more context-specific in higher layers.

Kawin Ethayarajh. How contextual are contextualized word representations? Comparing the geometry of BERT, ELMo, and GPT-2 embeddings. In Kentaro Inui, Jing Jiang, Vincent Ng, and Xiaojun Wan,
editors, Proceedings of the 2019 conference on empirical methods in natural language processing and the 9th international joint conference on natural language processing (emnlp-ijcnlp), 2019.



poll: which of these change word
embeddings?



Finetuning, Prompting, LoRA

* finetuning can change input embeddings...but rarely does

* prompt/prefix tuning does not change input embeddings...but does change contextual

embeddings

e LLoRA...



Static vs Contextual Embeddings

Effectiveness

* Contextual embeddings are often more eftective

(e.g., higher precision),

* 1.4 x NDCGQG) effectiveness improvement from most
effective static and most effective contextual

* 1.4 x (NDCGQG) effectiveness improvement from fastest
static and fastest contextual

Tom Aarsen, “Irain 400x faster Static Embedding Models with Sentence Transformers”, January 15, 2025.
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https://huggingface.co/blog/static-embeddings

Static vs Contextual Embeddings

Efficiency

* Although contextual embeddings are often more
effective, static embeddings involve a simple

lookup.

* 81 x (CPU)/8.6 x (GPU) speed improvement between
fastest static and fastest contextual

* 1918 x (CPU)/101 Xx (GPU) speed improvement between
most effective static and most effective contextual

* Understand the constraints of your task
(effectiveness, efficiency) when you select

embeddings.

Tom Aarsen, “Irain 400x faster Static Embedding Models with Sentence Transformers”, January 15, 2025.
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https://huggingface.co/blog/static-embeddings

Multi-task training

* In addition to contextual representations, BERT
leveraged the concept of multi-task learning (MTL).

* Originally developed in the machine learning
community, MTL jointly optimizes model
parameters to perform well across a variety of tasks
[Caruana 1997}.

* Often leads to strong improvements in eftectiveness
by leveraging relevant representations between

tasks.

 Collobert and Weston {2008} applied to NLP.

Rich Caruana. Multitask learning. Machine Learning, 28:41-—-75, 1997.

ROOT-MEAN SQUARED ERROR ON TEST SET

TASK Single Task Backprop (STL) MTL Change MTL Change MTL
2HU 4HU 8HU 16HU 16HU to Best STL to Mean STL
1 or 2 Lanes 201 209 207 178 156 -12.4% * 21.5% *
Left Edge 069 071 073 073 062 -10.1% * -13.3% *
Right Edge 076 062 058 056 051 -8.9% * -19.0% *
Line Center 153 152 152 152 151 -0.7% -0.8%
Road Center 038 037 039 042 034 -8.1% * -12.8% *
Road Greylevel 054 055 055 054 038 -29.6% * -30.3% *
Edge Greylevel 037 038 039 038 038 2.7% 0.0%
Line Greylevel 054 054 054 054 054 0.0% 0.0%
Steering 093 069 087 072 058 -15.9% * -27.7% *

Ronan Collobert and Jason Weston. A unified architecture for natural language processing: deep neural networks with multitask learning. In Proceedings of the 25th international conference on machine

learning, 2008.



poll: when will multi-task learning
hurt?



Multi-task training

* although MTL can be good in general, it can also
lead to under-performance when,

* task inconsistency: when tasks contradict in the
appropriate representations, gradients can compete

e task dominance: when some tasks have more data, those
representations can dominate the learned representations

* tends not to be as much of an issue in NLP because,

* fine-tuning can mitigate task inconsistency and
dominance

* language tasks have significant overlap

Source vs. target (Task 1): @ Same covariance (Source: Task 2) () Diff. covariance (Source: Task 3)
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Performance improvement of a target task (Task 1) by MTL with a source task vs.
STL. Red: positive transfer when the source is Task 2, which has the same
covariance matrix with target. Green: negative (to positive) transfer when the
source is Task 3, which has a different covariance from the target, as its # of samples

increases.

If your application involves learning
representations with multi-task learning,
pay attention to task correlations and

distribution

Sen Wu, Hongyang R. Zhang, and Christopher Ré. Understanding and improving information transfer in multi-task learning. In International conference on learning representations, 2020.



Representation bias

* Task dominance is one way that representations
can be influenced in unexpected ways by training.

Category Ours on BERT
Log Probability Bias Score

* Learned representations can be influenced by,

Pleasant/Unpleasant (Insects/Flowers) 0.8744%*

o ; Pleasant/Unpleasant (EA/AA) 0.8864*
architecture Career/Family (Male/Female) 1.126%*

e labels Math/Arts (Male/Female) 0.8495°*
Science/Arts (Male/Female) 0.9572%*

e data

* Social biases reflected in training data have been well-
documented {Kurita et al., 2019}.

* More generally, training data representation can
significantly impact representations across a variety of
dimensions [Rolf et al., 2021}

If your application involves using pre-
trained representations, make sure you
understand the implicit bias.

Keita Kurita, Nidhi Vyas, Ayush Pareek, Alan W Black, and Yulia Tsvetkov. Measuring bias in contextualized word representations. In Marta R. Costa-jussa, Christian Hardmeier, Will Radford, and Kellie
Webster, editors, Proceedings of the first workshop on gender bias in natural language processing, 2019.

Esther Rolf, Theodora T Worledge, Benjamin Recht, and Michael Jordan. Representation matters: assessing the importance of subgroup allocations in training data. In Marina Meila and Tong Zhang,
editors, Proceedings of the 38th international conference on machine learning, volume 139 of Proceedings of Machine Learning Research, 9go40-—-9051, , PMLR, 18--24 Jul 2021.



(Geometry of embeddings

* Projection from one embedding to another
involves,

* compression: may throw away information during
embedding; what to throw away determined by the
training objective.

* distortion: will expand or contract representations
during embedding; how to distort determined by the
training objective.

consider the earth...
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(Geometry of embeddings

* Projection from one embedding to another
involves,

* compression: may throw away information during
embedding; what to throw away determined by the
training objective.

* distortion: will expand or contract representations
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(Geometry of embeddings

* Projection from one embedding to another
involves,

* compression: may throw away information during
embedding; what to throw away determined by the
training objective.

* distortion: will expand or contract representations
during embedding; how to distort determined by the o
tr aining Objective . e T — MABPER <
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(Geometry of embeddings

* Projection from one embedding to another

involves,
wordzvec transformer

* compression: may throw away information during 10

embedding; what to throw away determined by the -+

training objective. oy

5

* distortion: will expand or contract representations 10

during embedding; how to distort determined by the L S S S S

X X

training objective.

* Transformer-based embeddings tend to be
anisotropic, isolated to a narrow cone {Gao et
al., 2019; Ethayarajh 2019; Meng et al., 2021}

Jun Gao, Di He, Xu Tan, Tao Qin, Liwei Wang, and Tieyan Liu. Representation degeneration problem in training natural language generation models. In International conference on learning representations, 2019.
Kawin Ethayarajh. How contextual are contextualized word representations? Comparing the geometry of BER'T, ELMo, and GPT-2 embeddings. In Kentaro Inui, Jing Jiang, Vincent Ng, and Xiaojun Wan, editors,
Proceedings of the 2019 conference on empirical methods in natural language processing and the 9th international joint conference on natural language processing (emnlp-ijcnlp), 2019

Yu Meng, Chenyan Xiong, Payal Baja, Saurabh Tiwary, Paul Bennett, Jiawei Han, and Xia Song. Coco-lm: correcting and contrasting text sequences for language model pretraining. In Proceedings of the 35th
international conference on neural information processing systems, 2021I.
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* Transformer-based embeddings tend to be
anisotropic, isolated to a narrow cone {Gao et
al., 2019; Ethayarajh 2019; Meng et al., 2021}

Jun Gao, Di He, Xu Tan, Tao Qin, Liwei Wang, and Tieyan Liu. Representation degeneration problem in training natural language generation models. In International conference on learning representations, 2019.
Kawin Ethayarajh. How contextual are contextualized word representations? Comparing the geometry of BER'T, ELMo, and GPT-2 embeddings. In Kentaro Inui, Jing Jiang, Vincent Ng, and Xiaojun Wan, editors,
Proceedings of the 2019 conference on empirical methods in natural language processing and the 9th international joint conference on natural language processing (emnlp-ijcnlp), 2019

Yu Meng, Chenyan Xiong, Payal Baja, Saurabh Tiwary, Paul Bennett, Jiawei Han, and Xia Song. Coco-lm: correcting and contrasting text sequences for language model pretraining. In Proceedings of the 35th
international conference on neural information processing systems, 2021I.
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* Transformer-based embeddings tend to be
anisotropic, isolated to a narrow cone {Gao et
al., 2019; Ethayarajh 2019; Meng et al., 2021}

Jun Gao, Di He, Xu Tan, Tao Qin, Liwei Wang, and Tieyan Liu. Representation degeneration problem in training natural language generation models. In International conference on learning representations, 2019.
Kawin Ethayarajh. How contextual are contextualized word representations? Comparing the geometry of BER'T, ELMo, and GPT-2 embeddings. In Kentaro Inui, Jing Jiang, Vincent Ng, and Xiaojun Wan, editors,
Proceedings of the 2019 conference on empirical methods in natural language processing and the 9th international joint conference on natural language processing (emnlp-ijcnlp), 2019

Yu Meng, Chenyan Xiong, Payal Baja, Saurabh Tiwary, Paul Bennett, Jiawei Han, and Xia Song. Coco-lm: correcting and contrasting text sequences for language model pretraining. In Proceedings of the 35th
international conference on neural information processing systems, 2021I.



Embedding visualization

* t-SNE is the dominant method of visualizing

embeddings.

* Preserves local neighborhoods by converting
high-dimensional distances into probabilities
representing how likely points are to be
neighbors, then arranges points in 2D so
similar items stay close together

* embeddings are already a projection

* t-SNE projects further into two-dimensional

Sp acc. Visualization of 6,000 digits from the MINIST data set produced by the
random walk version of tSNE (employing all 60,000 digit images)

Laurens van der Maaten and Geoffrey Hinton. Visualizing data using t-sne. Journal of Machine Learning Research, 9(86):2579--26053, 2008.



poll: t-SNE can be deceptive

when...




tSNE

Hyperparameters matter

Original

Martin Wattenberg, Fernanda Viégas, and Ian Johnson. How to use t-sne effectively. Distill, 2016.
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tSNE

Cluster sizes in a t-SNNE plot mean nothing
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Martin Wattenberg, Fernanda Viégas, and Ian Johnson. How to use t-sne effectively. Distill, 2016.
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tSNE

Distances between clusters might not mean anything
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Martin Wattenberg, Fernanda Viégas, and Ian Johnson. How to use t-sne effectively. Distill, 2016.

%

Perplexity: 2
Step: 5,000

Perplexity: 5
Step: 5,000

Perplexity: 30
Step: 5,000

]

Perplexity: 50
Step: 5,000

L X

Perplexity: 100
Step: 5,000



tSNE

Random noise doesn’t always look random
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tSNE

Hallucinating shapes
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Martin Wattenberg, Fernanda Viégas, and Ian Johnson. How to use t-sne effectively. Distill, 2016.
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Sparsity

* So far, we've been discussing dense embeddings.



poll: we prefer dense
representations when...



poll: we prefer sparse
representations when...



Sparsity

* So far, we've been discussing dense embeddings.

* Dense representations
* native density: sensor readings
* learned density: lower-dimensional projections; distributed representations
* supports generalization; more limited memorization

* efhiciency reduces with dimensionality

* Sparse representations
* native sparsity: one-hot representations; tf.idf vectors
* learned sparsity: directly learn or post-process representations to ensure sparsity
* supports memorization; more limited generalization

* efhiciency reduces with density



Hybrid representations
Wide and deep models
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can combine benefits of sparse feature memorization with generalization from deep networks.

Heng-Tze Cheng, Levent Koc, Jeremiah Harmsen, Tal Shaked, Tushar Chandra, Hrishi Aradhye, Glen Anderson, Greg Corrado, Wei Chai, Mustafa Ispir, Rohan Anil, Zakaria Haque, Lichan Hong, Vihan

Jain, Xiaobing Liu, and Hemal Shah. Wide & deep learning for recommender systems. In Proceedings of the 1st workshop on deep learning for recommender systems, DLRS 2016.



Hybrid representations
Wide and deep models
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Hybrid representations

Wide network

* wide part is a linear model that captures memorization
* learns explicit co-occurrence patterns between features (e.g., user-item interactions, popular item biases).
* memorizes frequent item-user interactions (e.g., "User A likes Action movies").
* uses feature crosses (e.g., "Users in California like Surfing gear").

* handles cold-start issues better when engineered features are useful.

* examples
e user id (-m features), item id (-n features)

e user id x item id (m x n features)

* when it is helpful
* categorical features with strong co-occurrence patterns.

* recommendation settings where past interactions dictate behavior (e.g., repeat purchases).

e limitations
* cannot generalize well to unseen feature combinations (e.g., new items, new users).

* requires manual feature engineering (e.g., defining which features to cross).

Heng-Tze Cheng, Levent Koc, Jeremiah Harmsen, Tal Shaked, Tushar Chandra, Hrishi Aradhye, Glen Anderson, Greg Corrado, Wei Chai, Mustafa Ispir, Rohan Anil, Zakaria Haque, Lichan Hong, Vihan

Jain, Xiaobing Liu, and Hemal Shah. Wide & deep learning for recommender systems. In Proceedings of the 1st workshop on deep learning for recommender systems, DLRS 2016.



Hybrid representations
Wide and deep models
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Hybrid representations

Deep network

* deep part captures generalization by learning complex, nonlinear relationships between features.
* automatically discovers feature interactions that not explicitly engineered in the wide part.

* embedding layer
* converts sparse features (e.g., individual user/item IDs) into dense vectors.

* user 123 — {0.1,-0.3, 0.7, ...]

* deep network
* stack of fully connected layers

* when it is helpful
e latent relationships between features (e.g., "Users who like X tend to like Y, even if never co-occurring in history").
* unseen users/items (generalization through embeddings).

* unknown feature interactions (rather than manually defining feature crosses in wide).

* when it is helpful
* Requires more data than the wide model to generalize well.

* Harder to interpret than the wide model.

Heng-Tze Cheng, Levent Koc, Jeremiah Harmsen, Tal Shaked, Tushar Chandra, Hrishi Aradhye, Glen Anderson, Greg Corrado, Wei Chai, Mustafa Ispir, Rohan Anil, Zakaria Haque, Lichan Hong, Vihan

Jain, Xiaobing Liu, and Hemal Shah. Wide & deep learning for recommender systems. In Proceedings of the 1st workshop on deep learning for recommender systems, DLRS 2016.



Hybrid representations
Wide and deep models
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Hybrid representations
Wide and deep models

Logistic Loss

I

e

ReLU (256)

RelLU (512) Model Offline AUC Online Acquisition Gain
Wide (control) 0.726 0%
ReLU (1024)
| Cross Product Deep 0.722 +2.9%
Concatenated Embeddings (~1200 dimensions) Transformation Wide & Deep 0.728 +3.9%
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Next time

* moving from embeddings to retrieval...



